
A 3-D Lasso Tool for Editing 3-D Objects: Implemented Using a
Haptics Device

Marjorie Darrah

Institute for Scientific
Research

Fairmont, WV 26554
mdarrah@isr.us

Alicia Kime

School of Science and
Mathematics

Fairmont State College
Fairmont, WV 26554

akime@mail.fscwv.edu

Frances Van Scoy

Lane Department of
Computer Science and
Electrical Engineering

West Virginia University
Morgantown, WV 26505

fvanscoy@wvu.edu

Abstract
Many paint programs include a lasso editing tool that
allows the user to capture an irregular portion of a two-
dimensional figure. However, no corresponding tool is
known to exist for three-dimensional editing. This paper
describes a lasso tool, based on a convex hull algorithm,
that has been simulated using the SensAble™ PHANTOM™
haptic device. The PHANTOM™ device is employed as a
three-dimensional mouse to select a set of non-planar
voxels, that is, three-dimensional pixels. The algorithm
uses the selected voxels to define a convex hull. Once the
voxels within the convex hull have been identified, they
can be deleted, copied, or modified.

1 Introduction
This project addressed the problem of selecting a set of
voxels (three-dimensional pixels) in a three-dimensional
model for editing. The tools available for two-dimensional
editing are rather flexible; many paint programs allow the
mouse to sketch the boundary of a region, either freehand
or using line segments to form a polygon. The user does
not have to enclose the region in a circle, ellipse or square
but may select a shape that is irregular. We sought to
generalize the two dimensional idea of a lasso enclosing a
irregular polygon to a lasso for three-dimensional sets of
voxels.
Current packages on the market allow three-dimensional
data to be edited in several ways including what are known
as: the cookie-cutter (or extrusion) approach, the melon
baller approach and the two-dimensional slicing approach
[1]. The cookie-cutter approach allows an arbitrary shape
to be drawn on a plane to enclose an area, then extends the
shape downward orthogonal to the plane so that it selects a
volume much like a cookie cutter presses through a large
quantity of dough. The melon baller method uses a regular
shape, such as sphere, cube, or rectangular prism to carve
out sections of the three-dimensional space by using that
shape. This allows greater control over the volume

selected than the previous method, but it still yields a
regular shaped region. In a third approach, two-
dimensional slicing, a two-dimensional projection of the
three-dimensional data set is edited repeatedly. The data
set may be rotated to observe the data from different
viewpoints, but the mouse is still editing in two
dimensions.
The tool we created and simulated using the PHANTOM™
haptics device makes possible the freehand editing of a
three-dimensional data set. Our prototype allows the user
to specify a data set, containing points with (x,y,z)
coordinates, which is then rendered as voxels in a three-
dimensional haptic scene. To construct a convex hull, the
haptics device is first used to select a set of three-
dimensional voxels. When at least four non-planar voxels
have been chosen, the program will construct a convex hull
that encloses all points within the boundary of an irregular
convex polyhedron defined by those voxels.

2 Mathematical Approach
To create a lasso tool that allows for the arbitrary selection
of points and the enclosure of irregular three-dimensional
volumes, we first explored the geometry of the problem.
Just as the two-dimensional lasso tool uses a polygon to
enclose the area to be edited, a three-dimensional lasso
must define a polyhedron. A polyhedron is a region of
space whose boundary is composed of flat polygon faces,
any pair of which are either disjoint or meeting at edges
and vertices.
It should be noted that we here are discussing and
constructing a convex polyhedron. A set S of points is
defined as convex if x ∈ S and y ∈ S implies that the line
segment xy ⊆ S. A polyhedron that is constructed from the
user-selected points is called a convex hull of the set. The
following example may help visualize the concept of a
convex hull. In a two-dimensional plane, the convex hull is
the shape a string assumes when anchored to a nail at the
lowest point with respect to y and wrapped

mailto:mdarrah@isr.us
mailto:akime@mail.fscwv.edu
mailto:fvanscoy@wvu.edu

counterclockwise around nails pounded into the plane at
each point. In three dimensions, the boundary of a convex
hull is the shape taken by plastic wrap stretched tightly
around all the points. More formally a definition of convex
hull of a set S is the intersection of all convex sets that
contain S.
Many algorithms exist for constructing both two and three-
dimensional convex hulls. Graham’s Algorithm [1], the
fastest method for constructing a convex hull in two
dimensions, has no obvious generalization to three
dimensions. Among the best-known three-dimensional
algorithms are Gift Wrapping (Chand & Kapur), Divide
and Conquer (Preparata & Hong) and Incremental
Algorithm (Seidel & Kallay). We chose to implement the
Incremental Algorithm outlined by Joseph O’Rourke in the
second edition of his, Computational Geometry in C [2].
In two dimensions the basic method of the Incremental
Algorithm is to add points one at a time, constructing the
hull of the first k points at each step and using that hull to
incorporate the next point.

Algorithm: INCREMENTAL ALGORITHM
Let H2 ← conv{p0,p1,p2}.
For k = 3 to n-1 do

Hk ←conv{Hk-1∪ pk}

The algorithm begins with a triangle and considers whether
the next point is inside or outside the area enclosed by that
triangle. If the point is inside, then it is discarded; if it is
outside, then the algorithm determines the two tangent lines
from the new point to the triangle. The algorithm continues
in this manner until the convex hull is fully defined.
This incremental algorithm, with time complexity of O(n2),
can be generalized to three dimensions.

Algorithm: 3D INCREMENTAL ALGORITHM
Initialize H3 to tetrahedron (p0,p1,p2,p3).
for i = 4, …, n-1 do
for each face f of H i-1 do
 Compute volume of tetrahedron determined by f and pi.
 Mark f visible iff volume < 0.
 if no faces are visible
 then
 Discard pi (it is inside H i-1).
 else
 for each visible border edge e of H i-1 do
 Construct cone face determined by e and pi.
 for each visible face f do
 Delete f.
 Update Hi.

The overall structure of the three-dimensional incremental
algorithm is identical to that of the two-dimensional
version. From a set of identified points, the algorithm
chooses four non-planar points from which the initial hull
is constructed. At the ith iteration, the algorithm computes
the hull-in-progress by adding a new point. This action
yields two possibilities: (1) if the new point is inside the
existing hull, it is discarded; (2) if it is outside, the
algorithm constructs a cone face determined by the new
point and each border edge visible from that point. The
process of defining the convex hull on the basis of a single
new point p is visualized in Figures 1 - 3.

Figure 1: Convex hull Q and point p outside the hull

Figure 2: The striped faces are interior and marked for
deletion when the hull is extended to include point p.

Figure 3: The hull after point p and the new faces have
been added.

3 Implementation of Convex Hull Algorithm
To simplify the data structures used, the algorithm assumes
that every face of the surface of the polytope (convex
polyhedron) is a triangle. Three primary data types are
required to define a convex hull, vertices, edges, and faces.
The computer program that implements the algorithm
consists of four basic sections: read, create initial polytope,
construct the hull, and print. First the vertices are read into
an array. Next, an initial polytope for the incremental
algorithm is created. It is a double-sided triangle, a
polyhedron with three vertices and two faces that are
identical except for the order of their vertices. To construct
this figure, three noncollinear points are found, and after
marking them as processed the double-sided triangle is
built as the first hull Q. It is now necessary to find a fourth
nonplanar point p to form a tetrahedron. For each point p it
must be determined if p is inside or outside Q. To
accomplish this, one must determine for every face f of Q if
the face f is visible from point p. The face f is visible from
p iff it lies in the positive halfspace determined by the plane
containing f. The positive side is determined by the
counterclockwise orientation of f. If no face is visible from
p, then it must lie inside the hull, and it is marked for
deletion. If p is outside Q, then the hull is transformed by
finding the tangent planes that bound a cone of triangle
faces with the apex at point p and the base edges of Q
(Figure 2). The portion of the polytope visible from p
forms a connected region of the surface of the existing hull
as indicated by the striped faces in Figure 2. The interior
faces of the region must now be deleted and the cone
connected to the boundary. To determine the edges of the
hull, those edges adjacent to two visible faces are marked
interior and marked for deletion; those edges with one
adjacent visible face are identified as on the border of the
visible region. Once the edges of the border are identified,
then for every edge on the border a new triangular face can
be constructed using that edge and the point p. At this
point, the convex hull is almost complete. All that remains
is to “clean up” the hull by deleting hidden faces and edges
and making sure the vertex, edge and face lists are properly
linked.

4 Construction of the Prototype
Our effort to model the algorithm began by building a
visualization program using OpenGL. The program we
devised first reads in a data set consisting of (x,y,z,r,g,b)
giving position and color information and then creates a
voxel for each point in an n x n x n space. The voxels are
cubes that can be opaque or transparent. Once the scene
has been rendered, it can be rotated clockwise or
counterclockwise in the x, y, and z directions around a
fixed point. Given a set of three-dimensional non-planar
coordinates (a subset of the original data set) the program
determines the convex hull defined by those points. In our
program we identified the hull by changing the color of the
points that constituted it. When operational the program

demonstrated that the convex hull algorithm could be
implemented in a graphics program.
Wishing additionally to implement the model into a three-
dimensional touch environment, we developed a related
program using the GHOST® API to incorporate haptics.
The program we developed for use on the PHANTOM™
haptics device uses “voxel world” coordinates, where the
position of the voxel is (x, y, z) and x, y, and z are all
integers. As a trial experiment, we created a 3 x 3 x 3 grid
of spheres to represent the voxel space. The spheres were
large enough to be felt, but separated by sufficient space to
permit movement of the haptic cursor within the grid. We
made use of the PHANTOM™ haptics device as a three-
dimensional selection device. Using the stylus, we selected
certain spheres that represented the set of points to define
our convex hull. The algorithm then determined the
interior points of the hull and we identified those voxels by
changing their color.

5 Future Work
One application of a tool such as we devised is to facilitate
the exploration of three-dimensional scientific or abstract
data sets using haptics. At the present we hope to
incorporate this work into a tool kit that uses haptic
feedback to explore Light Detection and Ranging (LIDAR)
data. The LIDAR tool kit will enable the user to be
immersed in and interact with a point cloud of data and the
3-D lasso editing tool will allow for selection of points for
removal or coloring.

SensAble Technologies, Inc. and GHOST are registered
trademarks, and SensAble and PHANTOM are trademarks,
of SensAble Technologies, Inc.

References

[1] Van Scoy, F., Peredera, A., and Kime, A. (1999), “A

3-D Lasso Tool for Editing 3-D Objects: Preliminary
Work”, Workshop on Virtual Reality, Marilia, Brazil,
November 18-20.

[2] O’Rourke, J. (1998), Computational Geometry in C,
second edition, Cambridge University Press,
Cambridge.

[3] Graham, R.L. (1972), “An efficient algorithm for
determining the convex hull of a finite planar set”,
Inform. Process. Lett. 1, 132-3.

	Marjorie Darrah
	Institute for Scientific Research
	Fairmont, WV 26554
	mdarrah@isr.us
	Alicia Kime
	School of Science and Mathematics
	Fairmont State College
	Fairmont, WV 26554
	akime@mail.fscwv.edu
	Frances Van Scoy
	Lane Department of Computer Science and Electrical Engineering
	West Virginia University
	Morgantown, WV 26505
	fvanscoy@wvu.edu
	Abstract
	Introduction
	Mathematical Approach
	Implementation of Convex Hull Algorithm
	Construction of the Prototype
	Future Work
	SensAble Technologies, Inc. and GHOST are registered trademarks, and SensAble and PHANTOM are trademarks, of SensAble Technologies, Inc.
	References

